首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   200篇
  国内免费   288篇
大气科学   2篇
地球物理   97篇
地质学   953篇
海洋学   61篇
天文学   15篇
综合类   23篇
自然地理   53篇
  2024年   2篇
  2023年   3篇
  2022年   17篇
  2021年   19篇
  2020年   22篇
  2019年   25篇
  2018年   26篇
  2017年   27篇
  2016年   34篇
  2015年   27篇
  2014年   40篇
  2013年   65篇
  2012年   35篇
  2011年   39篇
  2010年   36篇
  2009年   75篇
  2008年   68篇
  2007年   77篇
  2006年   63篇
  2005年   57篇
  2004年   54篇
  2003年   59篇
  2002年   55篇
  2001年   46篇
  2000年   54篇
  1999年   38篇
  1998年   22篇
  1997年   22篇
  1996年   18篇
  1995年   14篇
  1994年   15篇
  1993年   4篇
  1992年   7篇
  1991年   9篇
  1990年   7篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1985年   2篇
  1984年   1篇
  1954年   2篇
排序方式: 共有1204条查询结果,搜索用时 15 毫秒
991.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   
992.
993.
Studies of Cenozoic lavas and associated sediments in the Kiandra‐Cabramurra and Adaminaby‐Cooma areas identify and date tectonic deformations responsible for differential uplift and drainage development of the region. Volcanic activity on the northern Monaro was mainly Eocene‐Oligocene but in the extreme north there are Early Miocene sediments and lavas. Volcanic activity and folding began to rearrange the drainage in the Eocene‐Oligocene. The headwaters of the Murrumbidgee River originally flowed south into the Eucumbene River but Early Miocene folding and faulting uplifted the Monaro Range and created a large lake near Adaminaby. Lake overtopping rerouted the drainage east and then south along the basalt‐filled valley of an old north‐flowing tributary, the ‘Adaminaby River’, forming the present‐day Murrumbidgee River. The folding also produced a 300 m height difference between the Berridale and Adaminaby Plateaus and formed a section of the Great Divide. This fold displacement ranks with the largest Cenozoic fault displacements. In the Kiandra area tectonism associated with Early Miocene volcanism rearranged the drainage and tilted the Kiandra area and Kosciuszko Block to the north.  相似文献   
994.
Barrington shield volcano was active for 55 million years, based on basalt K–Ar and zircon fission track dating. Activity in the northeast, at 59 Ma, preceded more substantial activity between 55 and 51 Ma and more limited activity on western and southern flanks after 45 Ma. Eruptions brought up megacrystic gemstones (ruby, sapphire and zircon) throughout the volcanism, particularly during quieter eruptive periods. Zircon fission track dating (thermal reset ages) indicates gem‐bearing eruptions at 57, 43, 38, 28 and 4–5 Ma, while U–Pb isotope SHRIMP dating suggests two main periods of zircon crystallisation between 60 and 50 Ma and 46–45 Ma. Zircons show growth and sector twinning typical of magmatic crystallisation and include low‐U, moderate‐U and high‐U types. The 46 Ma high‐U zircons exhibit trace and rare‐earth element patterns that approach those of zircon inclusions in sapphires and may mark a sapphire formation time at Barrington. Two Barrington basaltic episodes include primary lavas with trace‐element signatures suggesting amphibole/apatite‐enriched lithospheric mantle sources. Other basalts less‐enriched in Th, Sr, P and light rare‐earth elements have trace‐element ratios that overlap those of HIMU‐related South Tasman basalts. Zircon and sapphire formation is attributed to crystallisation from minor felsic melts derived by incipient melting of amphibole‐enriched mantle during lesser thermal activity. Ruby from Barrington volcano is a metamorphic type, and a metamorphic/metasomatic origin associated with basement ultramafic bodies is favoured. Migratory plate/plume paths constructed through Barrington basaltic episodes intersect approximately 80% of dated Palaeogene basaltic activity (65–30 Ma) along the Tasman margin (27–37°S) supporting a migratory plume‐linked origin. Neogene Barrington activity dwindled to sporadic gem‐bearing eruptions, the last possibly marking a minor plume trace. The present subdued thermal profile in northeastern New South Wales mantle suggests future Barrington activity will be minimal.  相似文献   
995.
A major west‐trending lineament marked by a wide belt of highly deformed rocks (the Redbank Zone), lies in the Arunta Complex, north of the Amadeus Basin. Along its southern margin the Zone has been progressively affected by, and is hence older than, migmatization and granite intrusion. The migmatization event yields a Rb‐Sr isochron age of 1076 ± 50 m.y. Within the migmatite complex, relicts of a pre‐migmatite metasedimentary sequence around the Chewings Range yield a Rb‐Sr isochron age of 1620 ± 70 m.y. The migmatites are unconformably overlain by the basal unit of the Amadeus Basin sequence, the Heavitree Quartzite. The 1076 ± 50 m.y. date thus provides a maximum age for the start of sedimentation along the northern margin of the Basin. The existence of a major zone of weakness in the basement probably exerted a strong control on basement and cover deformation during the Palaeozoic Alice Springs Orogeny.  相似文献   
996.
东、西昆仑山晚新生代以来构造隆升作用对比   总被引:6,自引:0,他引:6  
东、西昆仑晚新生代以来隆升过程和程度存在明显差异。东昆仑山现代地貌格局主要是在第四纪以来经过早中更新世之交的昆黄运动和中更新世晚期的共和运动形成的,山系的崛起在时空演化上呈现出由北向南的迁移趋势,而西昆仑山在第三纪已有明显的地貌反差,第四纪地貌反差加剧。东昆仑地区在昆黄运动后尽管形成了近东西向的东流水系,但向南的强烈溯源侵蚀并奠定现代河流水系格局主要发生于中更新世晚期,与共和运动大体同时,而西昆仑地区向南的强烈溯源侵蚀主要发生于早更新世晚期,与东昆仑的昆—黄运动大体同时。在剥蚀程度上,东昆仑最上部3km的去顶至少延续了45Ma,而西昆仑公格尔—塔什库尔干地貌单元只延续了2~5Ma。控制东、西昆仑晚新生代构造隆升的动力背景可能取决于强烈加厚及强烈隆升的青藏高原岩石圈边缘的重力伸展垮塌与来自南部的挤压应力之间的动态平衡。考察青藏高原隆升过程与机制,不仅要注意隆升作用的共性,更要强调不同部位隆升过程及动力学的差异性。  相似文献   
997.
The evolution of the Main Cordillera of Central Chile is characterized by the formation and subsequent inversion of an intra-arc volcano-tectonic basin. The world’s largest porphyry Cu-Mo deposits were emplaced during basin inversion. Statistically, the area is dominated by NE- and NW-striking faults, oblique to the N-striking inverted basin-margin faults and to the axis of Cenozoic magmatism. This structural pattern is interpreted to reflect the architecture of the pre-Andean basement. Stratigraphic correlations, syn-extensional deposits and kinematic criteria on fault surfaces show several arc-oblique structures were active as normal faults at different stages of basin evolution. The geometry of syn-tectonic hydrothermal mineral fibers, in turn, demonstrates that most of these structures were reactivated as strike-slip ± reverse faults during the middle Miocene – early Pliocene. Fault reactivation age is constrained by 40Ar/39Ar dating of hydrothermal minerals deposited during fault slip. The abundance and distribution of these minerals indicates fault-controlled hydrothermal fluid flow was widespread during basin inversion. Fault reactivation occurred under a transpressive regime with E- to ENE-directed shortening, and was concentrated around major plutons and hydrothermal centers. At the margins of the former intra-arc basin, deformation was largely accommodated by reverse faulting, whereas in its central part strike-slip faulting was predominant.  相似文献   
998.
华南陆缘在新生代期间经历了千米量级的上覆盖层剥蚀和山脉隆升;同时,其东侧的东海陆架盆地经历多次构造应力场的反转并发育多期反转构造。东海陆架盆地内的构造反转与华南陆缘隆升的发生时间和触发机制是否一致有待研究。为此,本文对浙江地区的岩石样品进行磷灰石裂变径迹测试和热演化史反演分析其隆升历史,并通过地震剖面分析东海陆架盆地的反转时间及其反转所导致的地层剥蚀量;最后,将二者进行对比分析并研究其动力学机制。结果发现,华南东部陆缘地区至少存在晚始新世(34. 5~33. 5Ma)、中中新世(16~11. 5Ma)、上新世以来(5~0Ma)三期明显的快速隆升事件,三期隆升导致的地层剥蚀量分别为227m、593m和865m;东海陆架盆地经历了古新世末-始新世初(~56Ma)、始新世末-渐新世初(~32Ma)和晚中新世(~10Ma)三期构造反转,三期反转导致的局部地层最大剥蚀量分别可达1200m、1300m和2000m。在时间上,东海陆架盆地的始新世末-渐新世初(~32Ma)和晚中新世(~10Ma)的构造反转分别滞后于浙江的晚始新世(34. 5~33. 5Ma)和中中新世(16~11. 5Ma)的隆升时间,说明这两期挤压-剥蚀事件分别具有自西向东的迁移性,即印度-欧亚板块碰撞的远程效应可能是导致该迁移特征的原因;在强度上,东海陆架盆地的反转剥蚀量大于浙江境内的地层隆升量、挤压强度东强西弱,中新世晚期菲律宾海板块向西俯冲导致冲绳海槽弧后伸展产生向西的挤压力、这种挤压应力向陆内传递且强度变弱可能是导致该特征的原因。  相似文献   
999.
广西涠洲岛晚新生代玄武岩地幔源区及岩浆成因   总被引:1,自引:0,他引:1  
杨文健  于红梅  赵波  陈正全  白翔 《岩石学报》2020,36(7):2092-2110
涠洲岛作为我国最年轻的第四纪火山岩岛,其火山活动表现出多期、多旋回和多喷发中心的特征,但其地幔源区特征和岩浆成因依然存在争议。本文对涠洲岛玄武岩开展了详细的矿物学和全岩主、微量元素及Sr-Nd-Pb同位素研究,以揭示其地幔源区特征和岩浆成因。涠洲岛玄武岩主要为碱性玄武岩,在岩浆上升过程,几乎未受到地壳物质的混染,经历了橄榄石和单斜辉石的分离结晶作用。轻稀土(LREE)富集、重稀土(HREE)亏损,轻、重稀土强烈分馏((La/Yb)N=14.42~28.64),Nb、Ta明显正异常,显示出与洋岛玄武岩(OIB)相似的微量元素和Sr-Nd-Pb同位素特征。Sr-Nd-Pb同位素比值变化较均一,且呈现出亏损地幔端元(DM)与富集地幔端元(EM2)的二元混合趋势。其中,EM2端元可能源于海南地幔柱。Sr/Sr*(1.21~2.36)和Eu/Eu*(1.01~1.11)正异常,指示源区存在再循环辉长岩洋壳组分。结合已有的地震层析成像结果和岩石地球化学数据,得出南海及周缘地区的晚新生代玄武岩的形成受控于海南地幔柱。伴随着海南地幔柱的上升,再循环的辉长岩洋壳经部分熔融与地幔橄榄岩反应生成石榴石辉石岩(贫硅辉石岩),石榴石辉石岩和未反应的地幔橄榄岩混合部分熔融形成涠洲岛玄武岩。  相似文献   
1000.
汉诺坝-阳原火成碳酸岩成因探讨   总被引:2,自引:0,他引:2  
樊祺诚  杜星星  隋建立  赵勇伟 《岩石学报》2010,26(11):3189-3194
大多数幔源硅酸盐岩浆都含少量碳酸盐岩浆,这些少量的碳酸盐岩浆在地幔演化中起了非同寻常的作用。本文报道了发现于汉诺坝、阳原地区新生代玄武岩中鲜见的火成碳酸岩。碳酸岩脉贯穿于玄武岩及其捕虏体橄榄岩,并导致橄榄岩强烈的碳酸盐化现象。碳酸岩脉主要由方解石组成(90%以上),岩石类型为方解石碳酸岩,含少量被裹挟的地幔橄榄石、斜方辉石、单斜辉石和尖晶石等矿物。碳酸岩化橄榄岩由原先的黄、绿色变为紫褐色,灰白色网状碳酸岩细脉穿插其中。碳酸岩脉和碳酸盐化橄榄岩的全岩稀土含量很低(∑REE=8.7×10-6~13.7×10-6),球粒陨石标准化REE模式呈LREE略微富集(~10×球粒陨石)分布模式,微量元素也只显示轻微富集(数倍于原始地幔),它们的δ13C均为负值(-11.2‰~-12.3‰),δ18O均为正值(22.0‰~22.6‰)。碳酸岩的Sr、Nd、Pb同位素组成均显示富集(87Sr/86Sr=0.7078~0.7079,143Nd/144Nd=0.5129,206Pb/204Pb=18.0,207Pb/204Pb=15.5,208Pb/204Pb=38.0)。由于碳酸盐岩浆喷出地表后易于风化,导致REE、微量元素和同位素组成明显偏离原生火成碳酸岩。但从张北少数新鲜碳酸岩所具有的原生火成碳酸岩的C、O同位素组成(δ13C=-5.7‰~-7.3‰,δ18O=8.5‰~10.1‰)特征,以及接沙坝碳酸岩的正εNd(5.3~5.5)为亏损地幔的特征,表明汉诺坝碳酸岩与玄武岩的同源性——它们都来自地幔。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号